This is ACA \# 26. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. Click here to show a set of five ACA26 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

1. K_{a} for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is 1.8×10^{-5} and K_{b} for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$is 5.6×10^{-10}. Which has the larger K?

HC2H3O2
K_{a} for $\mathrm{HC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$ is larger compared to K_{b} for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$.
2. Based on your response in Q 1 if we have a solution that is $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ will the solution be acidic or basic? acidic 100%

The solution will be acidic.
3. Calculate the $\mathbf{p H}$ of 1.00 L of a solution that is $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 0.100 M $\mathrm{NaC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$.
$\mathbf{p H}=4.74$

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ +	\rightleftarrows	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-(\mathrm{aq})+}$	$\mathrm{H}^{+}(\mathrm{aq})$
I	0.100		0.100	~ 0
C	-x		+x	+x
E	$0.100-\mathrm{x}$		$0.100+\mathrm{x}$	+x

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$
$1.75 \times 10^{-5}=[0.100+x][x] /[0.100-x]$
assume 0.1 - $\mathrm{x}=0.1$
$1.75 \times 10^{-5}=[0.100][x] /[0.100]$
$1.75 \times 10^{-5}=[\mathrm{x}]=\left[\mathrm{H}^{+}\right]$
The pH of the solution is 4.74 , so it is acidic as we predicted. In a solution of a weak acid and its conjugate base we know whether the solution is acidic or basic by comparing the K's for the two components. The component with the larger K determines the acid/base character of the solution.
4. The solution in Q3 is called a buffer solution. The important charateristic of a buffer solution is ability to resist large changes in $\mathbf{p H}$ when small amounts of strong acid or strong base are added. Consider the $\mathbf{p H}$ calculated in Q3, if a small amount of $\mathbf{H C l}$ is added to the solution will the $\mathbf{p H}$ increase or decrease? Provide a short response explaining your answer.
decrease. Adding strong acid to the buffer will result in a reaction with the conjugate base of the buffer to increase the amount of acid in the buffer...more acid, lower the $\mathbf{p H}$

Adding an acid to the solution will cause the pH of the solution to decrease...become more acidic.
5. In 1.00 Liter of solution that is $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{\mathbf{2}}$ what is the formula of the weak acid and the formula of the weak base in the solution.

The formula of the weak acid is $\mathbf{H C 2 H 3 O} \quad 95 \%$
The formula of the weak acid is $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.
The formula of the weak base is $\mathbf{C} 2 \mathrm{H}_{3} \mathbf{2}^{\wedge}-100 \%$
The formula of the weak base is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$.
6. If some HCl is added to the buffer solution in Q 5 write a chemical equation that
describes how the buffer solution neutralizes the added HCl .
$\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}--->\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
7. If some NaOH is added to the buffer solution in Q5 write a chemical equation that describes how the buffer solution neutralizes the added NaOH .
$\mathrm{OH}^{\wedge}-+\mathrm{HC} 2 \mathrm{H} 3 \mathrm{O} 2$--> $\mathrm{C}_{2} \mathrm{H} 3 \mathrm{O} 2^{\wedge}$ - + H2O
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}--->\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$
8. What is the $\mathbf{p H}$ of a 100 mL sample of distilled water at $\mathbf{2 5}$ degrees Celsius?
$\mathbf{p H}=7 \quad 75 \%$
Since the sample is pure water the $\mathbf{p H}$ should be 7 .
9. If $\mathbf{0 . 0 1 0 0} \mathbf{~ m o l ~ o f ~} \mathbf{H C l}$ is added to the $\mathbf{1 0 0} \mathbf{~ m L}$ sample of distilled water in Q8, calculate the $\mathbf{p H}$ of the solution. Assume no volume change occurs after mixing.
$\mathbf{p H}=1 \quad 50 \%$
Adding 0.0100 mL to 0.100 L will yield a 0.100 M HCl solution. HCl is a strong acid so the HCl will completely dissociate so $\left[\mathrm{H}^{+}\right]=0.100 \mathrm{M}$ and the pH is $\mathbf{1}$. So adding $\mathbf{0 . 0 1 0 0}$ moles to $\mathbf{1 0 0} \mathbf{~ m L s}$ of water causes a $\mathbf{~} \mathbf{H}$ change of $\mathbf{6} \mathbf{~} \mathbf{H}$ units!
10. Is there anything about the questions that you feel you do not understand? List your concerns/questions.
nothing
11. If there is one question you would like to have answered in lecture, what would that question be?
nothing
neutralization reactions!
Where is tho?

